
Knowledge-Based Systems 220 (2021) 106957

a

b

c

d

e

a
G
E
i
r
i

T

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Memetic algorithmwith non-smooth penalty for capacitated arc
routing problem✩

Rui Li a, Xinchao Zhao a,b,∗, Xingquan Zuo c, Jianmei Yuan b,d, Xin Yao e

School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

a r t i c l e i n f o

Article history:
Received 9 July 2020
Received in revised form 10 February 2021
Accepted 13 March 2021
Available online 16 March 2021

Keywords:
Capacitated arc routing problem (CARP)
Memetic algorithm (MA)
Smooth degree
Non-smooth penalty
Reinsertion method
Smooth condition

a b s t r a c t

The capacitated arc routing problem (CARP) has attracted much attention during last decades due to
its wide applications. However, the existing research methods still have a little potential to make full
use of the characteristics of CARP. This paper aims to mine the essential characteristics of arc routing
problem that node routing problem does not have. Based on the observation on characteristics of arc
routing instances, smooth condition is proposed and constructed as a rule to divide the link between
two tasks into smooth link and non-smooth link. Then smooth degree is defined to measure the
influence of non-smooth links on solution and a small smooth degree means the better quality for
a solution. The effect of smooth degree is verified through simulation comparison on several instance
sets, which indicates that there is a positive correlation between smooth degree and the total cost of
a solution. Non-smooth penalty is used to drive the non-smooth solution to smooth and to improve
its total cost. Then non-smooth penalty is inserted into path-scanning variants and new construction
algorithms are obtained. A partial reconstruction method (PRM) is designed using these construction
algorithms as an alternative kernel method. In order to further reduce the routes number, a reinsert
method (RiM) is proposed. Combining these two methods with traditional local search algorithms,
a memetic algorithm with non-smooth penalty (MANSP) is proposed which is originated from the
initial observation on the essential characteristics of arc routing problem. Extensive experiments
on smooth degree, penalty factor, and comparison with state-of-the-art algorithms show that the
proposed strategies are effective and the proposed algorithm MANSP performs very competitive.

© 2021 Elsevier B.V. All rights reserved.
a
w
t
t
c
b

g
p
m
e
l
p
d
C
a
l

1. Introduction

Capacitated Arc Routing Problem (CARP) [1] is a well-known
rc routing problem, which is defined on an undirected networks
= (V , E). Set V contains n nodes and set E contains m edges.

ach edge models a two-way street whose both sides are served
n parallel and in any direction, like common narrow streets in
ural areas. A fleet of identical vehicles with limited capacity Q
s waited at a depot node. A subset ER of edges require service

✩ This work is supported by National Natural Science Foundation of China
(61973042, 61873040) and Beijing Natural Science Foundation, China (1202020).

The code (and data) in this article has been certified as Reproducible
by Code Ocean:https://help.codeocean.com/en/articles/1120151-code-ocean-s-
verification-process-for-computational-reproducibility. More information on the
Reproducibility Badge Initiative is available at www.elsevier.com/locate/knosys.
∗ Corresponding author at: School of Science, Beijing University of Posts and
elecommunications, Beijing 100876, China.

E-mail address: zhaoxc@bupt.edu.cn (X. Zhao).
ttps://doi.org/10.1016/j.knosys.2021.106957
950-7051/© 2021 Elsevier B.V. All rights reserved.
by a vehicle. All edges can be traversed any times but is served
only once. Each edge (i, j) has a known traversal cost cij ≥ 0 and
demand rij ≥ 0. CARP aims to determine a set of vehicle routes
ith minimum total cost, such that each route starts and ends at
he depot, each required edge is served by one single route, and
he total demand served by a route does not exceed the vehicle
apacity Q . A survey on CARP and other arc routing problems can
e found in [2].
CARP has been widely applied in road networks including

ritting [3], urban waste collection [4–6], snow removal [7], field
ath planning [8], etc. Due to the wide applications of CARP,
any variations have been studied. Periodic CARP [9,10] consid-
rs various applications in periodic operations on street networks,
ike waste collection and sweeping. Multi-trip CARP [11,12] is
roposed for urban waste-collection problem that depots and
isposal facilities are located in different places. Multi-objective
ARP [13,14] not only minimizes the total-cost but also bal-
nces these trips. Since CARP is NP-hard [15], how to deal with
arge-scale CARP [9,16–19] remains an open question.

https://doi.org/10.1016/j.knosys.2021.106957
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.106957&domain=pdf
https://help.codeocean.com/en/articles/1120151-code-ocean-s-verification-process-for-computational-reproducibility
https://help.codeocean.com/en/articles/1120151-code-ocean-s-verification-process-for-computational-reproducibility
http://www.elsevier.com/locate/knosys
mailto:zhaoxc@bupt.edu.cn
https://doi.org/10.1016/j.knosys.2021.106957

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

r
l
s
a
i
U
f
s
i
w
m
i
P
g
a
r
e

h
m
w
w
l
(
a
l
R
t
b
n
d
f
a
f
c
m
c
Z
p

t
p
t
t
I
r
t
t
A
t
a

s

Fig. 1. An example of a non-smooth link.

There have been many successful algorithms that have been
eported in the literatures. The NP-hard [15] character of CARP
eads exact methods like [20] only applicable to small-scale in-
tances. Then heuristic methods [15,19,21] are proposed to obtain
n approximate solution in a relatively low computing time,
ncluding Augment-Merge (AM) [15], Path-Scanning (PS) [21],
lusoy’s algorithm [22]. Both AM and PS aim to construct a good
easible solution, so they are usually used to generate the initial
olution for other algorithms. A certain giant tour can be splitted
nto a feasible solution by Ulusoy’s tour splitting algorithm [22],
hich is very useful for route-first cluster-second method. The
eta-heuristic algorithm based on local search is expected to

mprove the existing solutions, like tabu search for CARP (CAR-
ET) [23], variable neighborhood descent algorithm (VND) [24],
uided local search algorithm (GLS) [25]. Many excellent results
re derived from meta-heuristics, for example, Memetic Algo-
ithms [14,26–29] and ant colony optimization algorithm [30,31]
tc.
Memetic Algorithm was firstly applied to CARP in [26,28]. MA

as great potential and often leads to better performance. So,
any improved MA algorithms are proposed. Memetic algorithm
ith extended neighborhood search (MAENS) [27] is proposed in
hich Merge-Split (MS) operator is capable of searching using

arge step sizes. Quantum-Inspired Immune Clonal Algorithm
QICA) [32] combines the feature of artificial immune system
nd quantum superposition ground on the qubit to solve the
arge scale CARP. Rank-based Memetic algorithm [29] designs the
ank-based Neighborhood Search (RENS) operator and constructs
wo rules to explain its working mechanism. Decomposition-
ased Memetic algorithm [13] applies the decomposition tech-
ique to solve the multi-objective CARP. An improved
ecomposition-based Memetic algorithm [14] enhances the per-
ormance of algorithm by replacing the solutions immediately
nd an archive for elite individuals. Memetic algorithm is used
or periodic capacitated arc routing problem in [9] and large-scale
apacitated arc routing problems in [17]. Excellent adaptability
akes MA possible to be used for other problems and also indi-
ates competitive performance, like optimal control problems of
ika virus epidemic with equilibriums [33], flow-shop scheduling
roblem [34] and nonlinear equation system [35].
Different from the node routing problem, the distance be-

ween two tasks maybe not the minimum distance in arc routing
roblem. This can be seen in Fig. 1, where the minimum connec-
ion of EF and CD is CE, but DE is used, where the solid line is
he required edge and the dashed line is the shortest connection.
t makes sense to discuss this difference between arc and node
outing problem, so smooth conditions are defined in this paper
o determine whether a link is smooth or not. Smooth degree is
hen used to measure the overall characteristics of an arc solution.
s shown in Fig. 2 the convergence of smooth degree indicates
hat there is a positive correlation between the smooth degree
nd the total cost of a solution.
Since the total cost of a solution can be approximated by

mooth degree, the non-smooth penalty is used to punish those
2

Fig. 2. Convergence curve of total cost and smooth degree.

non-smooth links and non-smooth solutions. It is natural to insert
non-smooth penalty into path-scanning operation to make those
non-smooth solution as smooth as possible. It means that if one
task u is added to the route (0, . . . , e), it should be the nearest
task to the end task e of the route and the distance between e
and u must be the minimum distance among all four possible
distances between them. Then two new variants of path-scanning
methods are proposed and compared with four alternative con-
struction algorithms: Augment-Merge (AM) [15], Path-Scanning
(PS) [21], Path-Scanning with random selection (PSE) [36] and
Path-Scanning with ellipse rule (PSE) [37]. Experiments show that
better solutions can be produced by new construction methods.

Because local search sometimes cannot provide enough im-
provement, partial reconstruction method (PRM) is proposed us-
ing those constructive algorithms as kernel method based on the
framework of Merge-Split method. A simple reinsertion method
(RiM) is proposed to further reduce the total smooth degree
with a trial of reducing the route number. Then an improved
memetic algorithm with non-smooth penalty (MANSP) based on
the observed essential characteristics of arc routing problem is
proposed in this paper.

Fig. 3 illustrates the logic diagram of research motivation of
this paper. The motivation of this paper is to find out a special
characteristic of arc routing problem which is different from
the node routing problem. The observed smooth link is such
a characteristic that node routing problem does not have. The
concept of smooth degree is defined to measure the importance
of the smooth link and to describe the overall characteristics of
an arc solution. Based on the experimental observation it is found
that there is a positive correlation between the total cost and the
smooth degree of a solution. New MA variant with the essential
characteristic of arc routing problem is proposed, which embeds
non-smooth degree and non-smooth penalty of a solution with
non-smooth link into the existing algorithms as a penalty.

The main contributions of this paper are: (1) the essential
characteristics of arc routing problem, smooth link and smooth
degree are firstly observed and analyzed. (2) non-smooth penalty
of solution is embedded into the existing algorithms and two
improved path-scanning methods are obtained. (3) taking four
existing and two new path-scanning methods as an alternative
kernel algorithms, a partial reconstruction method framework is
proposed. (4) combining the observed characteristic of arc routing
problem and the following defined non-smooth penalty, a novel
memetic algorithm (MANSP) based on the reinsertion method is

proposed for CARP.

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

a
t
p
m
t
(
d
p
p
s
c

2

t
o
d

2

s
r

w
w
i
I
t
a
e
(
a
o
S
t
t
a
N

c

Fig. 3. The logic diagram of research motivation of this paper.
w
l

The rest of this paper is organized as follows. The CARP model
nd the basic operator of MA are described in Section 2. In Sec-
ion 3, the definition of smooth degree and the non-smooth are
enalty presented, then two non-smooth penalty path-scanning
ethods are proposed. Partial reconstruction method, reinser-

ion method, and a Memetic algorithm with non-smooth penalty
MANSP) are proposed in Section 4. Section 5 is devoted to
etailed analyze the smooth degree of construction algorithms,
enalty factor parameters, kernel algorithm, performance com-
arison with several state-of-the-art algorithms on multiple in-
tance sets and the effect of reinsertion method. Section 6 con-
ludes this paper.

. Background knowledge

In this section, the mathematical model and solution represen-
ation of CARP are firstly introduced. Then the general framework
f MA and traditional local search operations for CARP are briefly
escribed.

.1. Representation of solution and CARP model

A general CARP model is described in this section. CARP is
earching for a minimum cost route for vehicles to serve all the
equired edges ER ⊆ E and required arcs AR ⊆ A for a given graph
G = (V, E, A), and does not exceed vehicles’ capacity constraints
Q . Each arc task ⟨i, j⟩ is assigned a unique tag, marked as t , t ∈ Z+
which is the positive integer set. Each edge task (i, j) is considered
as a pair of arcs ⟨i, j⟩ and ⟨j, i⟩, one tag for each direction. Thus,
each edge task is assigned with two tags. Each tag t is associated
ith five features, namely, tail(t), head(t), sc(t), dc(t), and dem(t),
hich stand for the tail and head vertices, serving cost, deadhead-

ng cost, and the demand of the corresponding task respectively.
f t belongs to an edge task, inv(t) denotes the inversion of task
. The serving cost, deadheading cost, and demand of task inv(t)
re the same as sc(t), dc(t), and dem(t) respectively. But note that
ach edge task should be served only once, in either directions
i.e., either task t or inv(t) is served). Specially, depot is looked
s an arc task ⟨depot, depot⟩, and its tag is set to 0. A solution
f CARP is represented as an ordered list of tasks, denoted as
= (t1, t2, . . . , tN), where ti is the ith task of S, N is the number of
asks (both edge task and arc task). The 0 task can be used to split
he giant road to routes, and a solution of CARP can be marked
s S = (S1, S2, . . . , SN(S)), where Si is the ith route of solution S,
(S) is the number of routes.
Fig. 4 illustrates such a solution representation, in which S is a

omplete solution with several routes, and S is the ith route of the
i

3

Fig. 4. The representation of a solution.

Fig. 5. A part of solution.

solution. Given a solution S, the corresponding routing plan can
be obtained by connecting every two subsequent tasks with the
shortest path between them (i.e., finding a shortest path from the
head vertex of the former task to the tail vertex of the subsequent
task), which can be easily found by Dijkstra’s algorithm [38]. The
distance between task tj and task tj+1 is presented as sp(tj, tj+1).

Fig. 5 represents a route with different encoding schemes,
which further shows the corresponding transformations among
them. The first line is the task-based encoding, and the second
line is the corresponding vertex-based encoding. For example,
task 1 in the first row matches the arc task (1, 9) of the second
row. It is similar for the rest tasks of the first row and arc tasks
of the second row. Specially, task 0 represents the virtual task (1,
1) in which node 1 is the depot of the second row. Route starts
from the depot and ends at the depot. Then the start and the end
component values of both rows are marked as 0 in the task tag
and 1 in the node path. The third line represents the distance
between the adjacent vertices in the second row. If the adjacent
nodes are the same, the distance is set as 0.

According to the solution representation and the above men-
tioned constraints, CARP model is given as follows [27].

Definition 1 (Model of Capacitated arc Routing Problem).

min
S

z =
length(S)−1∑

j=1

[sc(tj)+ sp(tj, tj+1)] (1a)

s.t.
|Si|∑
j=1

dem(tj) ≤ Q , ∀i ∈ {1, 2, . . . , N(S)} (1b)

app(tj) = 1, ∀tj ∈ AR (1c)
app(tj)+ app(rev(tj)) = 1, ∀tj ∈ ER
tj ∈ {1, 2, . . . , (2|ER| + |AR|)} (1d)

here length(S) is the total encoding length of S and
ength(S) = |E | + |A | +N(S)+ 1, sc(t) is the serving cost of task
R R j

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

t

1

t
i
t
e
a

i

1
1
1
1
1
1
1
1

C
S
i

a
g
A
a
g
s

r

j, N(S) is the number of routes in solution S, |Si| is the number of
tasks in the ith route of solution S, app(tj) counts the times that
task tj appears in the solution S.

2.2. Framework of Memetic algorithms (MAs)

Memetic algorithm was invented by Moscato [39], which is
inspired by both Darwinian principles of natural evolution and
Dawkins’ notion of memes. From the evolutionary computation
perspective, MA can be roughly viewed as a general framework
of population-based EA hybridizing with individual learning pro-
cedure that is capable of performing local refinements [26]. The
general framework of MAs is summarized as Alg. 1.

Algorithm 1 General MAs

1: Initialization: Generate an initial population
2: while stopping criteria are not met do
3: Evaluate all individuals in the population
4: Evolve population using evolutionary operators
5: for each individual do
6: if rand(0,1) < Pls then
7: improve the individual by local search
8: end if
9: end for
0: end while

From Alg. 1, the main difference between MAs and EAs is
hat the mutation operator of EAs is replaced by local search
n MAs. Hence, the success of MAs [26,28] is mainly attributed
o the performance of local search operation. Many important
nhancing works in the incremental development of MAs [40,41]
re centered around the local search procedure.
The procedure of MAs for CARP is shown in Alg. 2, which

mproves individuals one by one.

Algorithm 2 MA for CARP

1: Initialization: Generate an initial population
2: while stopping criteria are not met do
3: Evaluate all individuals in the population
4: Evolve a new solution Sx using evolutionary operators
5: if rand(0,1)< Pls then
6: improve the individual by local search
7: Sl = LS(Sx)
8: if Sl is better than Sx then
9: Sx = Sl
0: end if
1: end if
2: sort population with fitness increasing
3: randomly select one Sy, y ∈ [popsize/2, popsize]
4: if Sx is better than Sy then
5: Sy = Sx
6: end if
7: end while

2.3. Initial population

Many construction algorithms [15,19,21,37] are used to solve
ARP, which can be used to initialize the population of MA.
everal classic construction algorithms used in this paper are
ntroduced in this section.

In the initialization process for CARP, one individual is usu-
lly generated by one construction algorithm. These individuals
enerated by the adopted construction algorithms, for example,
M, PS, PSR and PSE, aim to obtain several good initial solutions
nd to accelerate the convergence speed. Other individuals are
enerated randomly, then Ulusoy’s split algorithm [22] is used to
plit these individuals to feasible solutions.
4

2.3.1. Augment Merge (AM)
Augment-merge (AM) [15] algorithm is composed of two

phases, namely, Augment phase and Merge phase. Initially, AM
builds one route from each task and then sorts these T = |ER| +
|AR| routes in decreasing cost order. In the Augment phase each
oute Si (i = 1, 2, . . . , T − 1) is compared with each subsequent
route Sj with smaller cost (j = i+1, i+2, . . . , T). If Si traverses the
unique task u of Sj and it does not exceed the capacity constraints,
Si will collect task u and Sj discards it. In the Merge phase, each
pair of routes is sorted in descending order according to the
savings if both routes can be merged. This process will not stop
until no further positive saving remains.

2.3.2. Path Scanning (PS)
Firstly, the heuristic path-scanning (PS) [21] is introduced. PS

is a greedy-adding heuristic algorithm that first initializes the
route using the task tag of depot. At each iteration, PS tires
to find out the nearest tasks which do not violate the capacity
constraints. If no task satisfies the constraints, PS will connect the
end of the current route to depot with the shortest path between
them to form a route. Then it initializes a new empty path and
adds depot to it. If only one task satisfies the constraints, PS adds
that task to the end of the current route. If there are multiple
feasible tasks which are called as the tied edges, five rules are
used to determine which one should be chosen.

Rule 1: maximize the distance from the head of task to the
depot;

Rule 2: minimize the distance from the head of task to the depot;
Rule 3: maximize the term dem(t)/sc(t), where dem(t) and sc(t)

are the demand and serving cost of task t;
Rule 4: minimize the term dem(t)/sc(t);
Rule 5: use Rule 1 if the current capacity of vehicle is less than

half-full. Otherwise use Rule 2.

If multiple tasks still remain, ties are broken arbitrarily. PS ter-
minates when all the tasks have been selected. It scans the
unordered list of tasks for five times and only one rule is used
in each scan. Hence, PS will generate five ordered lists of tasks in
total. The best one is selected as the result of PS.

2.3.3. Path Scanning with random select (PSR)
Path Scanning with random selection (PSR) [36] is a random-

adding heuristic which is different from PS. PSR selects new task
randomly in the feasible nearest list. To eliminate the negative
effects of randomness, PSR is possible to be rerun multiple times
to get a better solution. Performance [36] indicates that a random
selection of tied edges performs as well as the multi-criterion
selection procedures in [21], and suggests that greedy-adding
heuristics should be compared to random-adding heuristics dur-
ing the testing and evaluation for CARP. The main difference
between PSR and the original PS is the selection rule, i.e., PSR
selects next edge randomly and PS selects next edge based on
the above mentioned five rules. Therefore, PSR requires multiple
runs to get the best solution.

2.3.4. Path Scanning with ellipse rule (PSE)
Path Scanning with ellipse rule (PSE) [37] is based on PSR. The

only difference is the time when to select the final task. PSE uses
the ‘‘ellipse rule’’ to determine which one is chosen. When the
remain load space rsv ≤ α ∗ td/ned, the ‘‘ellipse rule’’ will be
used, where rsv is the remain space of vehicle, td is the total
demand of instance, ned is the task number of the instance. α
can be artificially set, and PSE algorithm advises α = 1.5. The
‘‘ellipse rule’’ selects the nearest task whose serving cost is no
less than the expected value of cost. The expected value is defined
as tc/ned + sp(end_task, depot), where tc is the total cost of the
instance, sp(end_task, depot) is the deadheading distance from the
latest task of current route to depot.

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

t
T
s

2

c
b
N
a
P
i
e
t
c
u
w
t
a

Fig. 6. the total cost and smooth degree convergence of MA.
Table 1
Comparison between the optimal and the suboptimal results on gdb9 and gdb23.
Solution Routes

number
Total
cost

Smooth interval
link number

Total interval
link number

Cost of smooth
interval link

Total cost of
non-smooth
interval link

Smooth
degree (SD)

gdb9− S1 10 303 60 61 81 3 1.3972
gdb9− S2 10 308 59 61 85 4 1.3991
gdb9− S3 10 309 59 61 83 7 1.4429
gdb23− S1 10 233 65 65 10 0 1.0448
gdb23− S2 11 235 66 66 12 0 1.0538
2

t
e
f
p
a
s
s
s
f
s

r
p
s
r

t
i
d

l
c

f

Definition 2 (Ellipse Rule).

sp(vi, vj)+ sc(vj)+ sp(vj, depot) ≤ tc/ned+ sp(vi, depot) (2)

where sp(vi, vp) is the deadheading distance from the task vi to
ask vp. PSE also requires multiple runs to get the best solution.
here are also several variants of the path-scanning algorithms,
ee [42].

.4. Crossover

At each iteration of Memetic algorithm [26,28], order
rossover (OX) operator is implemented. Two parents are chosen
y binary tournament selection, marked as P1 and P2 with length
. The classical OX crossover draws two random subscripts p
nd q with 1 ≤ p < q ≤ N . To build a child C , the substring
1[p] − P1[q] is copied into C[p] − C[q]. Finally, it scans P2
n a circular way from q + 1(mod N) to q(mod N) and copies
ach element not yet taken to fill C. OX is required to extend for
he CARP and the solution encoding method. Each chromosome
ontains all t tasks, but an edge can appear as one internal arc
or its inverse inv(u). Therefore, when copying u from a parent,
e must check whether u and inv(u) are not yet taken. Then
he children individuals are then evaluated after Ulusoy’s splitting

lgorithm [22].

5

.5. Local search operators

Unlike OX operator, which is usually general and applicable
o various list-based problems, local search operators are usually
xpected to incorporate some domain specific heuristics. There-
ore, MAs can balance well between application generality and
roblem specificity with a hybridization of population-based EA
nd individual learning. In this section, some traditional local
earch operators for CARP will be briefly introduced. Because a
olution to CARP is encoded as a sequence of tasks, any local
earch algorithm that works for sequences can be used. There are
our commonly used move operators for CARP [26,28], which are
ingle insertion, double insertion, swap, and 2-opt.
(1) Single Insertion: In the single insertion move, a task t is

emoved from its current position and re-inserted into another
osition of the current solution or a new empty route. If the
elected task t ∈ E, both of its directions will be considered when
e-inserting.

(2) Double Insertion: The double insertion move is similar to
he single insertion except that two consecutive tasks are moved
nstead of a single task. Similar to the single insertion, both
irections are also considered for edge tasks.
(3) Swap: In the swap move, two candidate tasks are se-

ected and their positions are exchanged. Both directions are also
onsidered for edge tasks.
(4) 2-opt: There are two types of 2-opt move operators, one

or a single route and the other for double routes. In the 2-opt

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

o
i
f

3

o
m

3

D
e

d

w
m
a
e
i

D

S

i
i
p
d
S
p

s
t
a

Algorithm 3 Path_scanning with random selection and non-smooth penalty (PSRP)

Input: candidate list {t1, t2, . . . , t2∗N(S)}, ti is the ith task, N(S) is the required task number, max_ite is the maximum run times.
Output: a feasible solution Sbest
1: ite := 0, Sbest := ∅, S := ∅
2: while ite<max_ite do
3: S := ∅, add the task 0 to the S, set e := 0, reset candidate list F=∅,
4: set remain capacity of the current vehicle rvc := 0
5: while candidate list is not empty do
6: if rvc <= da // for the end task then
7: get the candidate tasks set U with smallest penalty distance tasks from e to u and u to depot
8: else
9: get the candidate tasks set U with smallest penalty distance tasks from e to u
10: end if
11: if U is empty then
12: Add task 0 to S, set e := 0, rvc := Q , go to line 5.
13: end if
14: select one task u randomly from U .
15: add u to S
16: Set e = u, rvc := rvc − demand(u)
17: delete u and u′ from the candidate list, u′ is the reverse task of u.
18: end while
19: if S better than Sbest then
20: Sbest := S
21: end if
22: end while
c
s
n
t
s
c
i

s
g
t
c
t
s
g
b
m
r

e
t
a
s
T
w
l
s
r
r

3

3

o
c
c
a

D

f

move for a single route, a sub-route (i.e., a part of the route) is
selected and its direction is reversed. When applying the 2-opt
move to two routes, each route is cut into two routes and new
solutions are generated by reconnecting these four routes.

The existing algorithms are general and cannot take advantage
f the characteristics of the special problems. Then the character-
stic feature exploited from problem is discussed and analyzed as
ollows.

. Smooth degree and non-smooth penalty

In this section, the analysis on smooth degree, its influence
n the performance of MA on some instances, and the improving
ethods are presented.

.1. Smooth degree

efinition 3 (Smooth Condition of Intermediate Link Between
a, eb).

(ea, eb) = min{d(ea, eb), d(ea, e′b), d(e
′

a, eb), d(e
′

a, e
′

b)} (3)

here ea, eb ∈ S are the task edges in solution S, d(ea, eb) is the
inimum distance between the head of ea and the tail of eb, e′a, e

′

b
re the reverse of ea, eb respectively. If the interval link between
a and eb satisfies the smooth condition, it is called a smooth
nterval link between ea and eb, or this link is smooth.

efinition 4 (Smooth Degree of Solution S).

D(S) =
tc(S)+ tic(S)− tsc(S)

tc(S)− tic(S)
(4)

where S is a solution, tc(S) is the total cost of S, tic(S) is the total
cost of interval link of S, and tsc(S) is the total cost of smooth
nterval link of S. tc(S)−tic(S) is the service cost and tic(S)−tsc(S)
s the non-smooth interval link cost. tc(S)+ tic(S)− tsc(S) is the
enalty to the total cost. Eq. (4) actually stands for non-smooth
egree of a solution. So a large smooth degree value of a solution
means that it is less smooth. Otherwise, it is smooth. This
henomenon can be intuitively found in Fig. 6 and Table 1.
Fig. 6 illustrates the convergence curves of MA on four in-

tances. Each subfigure in Fig. 6 has two convergence curves of
otal cost and smooth degree on instances gdb11, val2C, egl-e3-A
nd egl-e4-C. Observed from these four convergence curves, the
6

hanging trends of total cost and smooth degree are roughly con-
istent with each other, but not exactly the same. It means that,
ot strictly speaking, smooth degree can be used as a symbol for
he quality of solution to some extent. The greater fluctuation of
mooth degree for instances egl-e3-A and egl-e4-C means that the
orrelation of smooth degree and total cost, relatively speaking,
s a little weaker for these two instances.

More detailed analysis on three solutions of gdb9 and two
olutions of gdb23[43] are listed in Table 1. For the solutions of
db9, the lower cost of non-smooth total interval link can lead to
he lower cost of total interval link which means that the total
ost is related to the total cost of non-smooth interval link. So
he total cost can be decreased by reducing the total cost of non-
mooth interval link. The experimental results of gdb9 − S2 and
db9 − S3 show that the increase of smooth interval cost may
e an offset by reducing the cost of non-smooth interval link. It
eans that the total cost of smooth interval may be allowed to

ise moderately.
When solving gdb23 instance [26], Memetic algorithm (MA) is

asy to fall into the local optimal solution with total cost 235, but
he optimal solution has a total cost 233. Comparing the optimal
nd the suboptimal solutions, it can be found that the suboptimal
olution needs more routes (11 vs. 10) than the optimal solution.
he suboptimal solution needs more vehicles to serve the tasks
hich causes more wasting between the depot and the first or the

ast task. The experimental results of gdb23− S1 and gdb23− S2
how that the total cost is possible to be further decreased by
educing the total number of routes when there is no enough
oom to improve.

.2. Non-smooth penalty path-scanning method

.2.1. Non-smooth penalty
Although smoothness cannot completely represent the quality

f the solution, it can reflect the quality of the solution to a
ertain extent. Therefore, the fitness value of a solution can be
onstructed by adding non-smoothness to the original cost as an
dditional penalty as Eq. (5).

efinition 5 (Penalty Fitness of Solution S).

itness(S) = tc(S)+ λ · ns(S) (5)

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

w

w

here tc(S) is the total cost of S, λ > 0, ns(S) is the non-smooth
travel cost of S. Instead of taking the total cost only as the fitness
value, non-smooth penalty is used as a partial of the fitness value
when evaluating a solution. Therefore, the modified fitness value
fitness(S) of a solution is calculated with the sum of the total cost
and its non-smooth penalty.

3.2.2. Non-smooth penalty path-scanning method
The non-smooth penalty method can improve the smoothness

by penalizing the non-smooth cost and adding it to the original
cost. This means that the next added task is the closest and has
the minimal non-smooth travel cost. Non-smooth penalty can be
easily hybridized into the existing constructive method as Eq. (6).

Definition 6 (Penalty Distance From Task u to Task v).

dp(u, v) = d(u, v)+ λ(d(u, v)− dmin(u, v)) (6)

where d(u, v) represents the distance from head of task u to tail
of task v, dp(u, v) means the penalty distance from head of task
u to tail of task v, and λ > 0, dmin(u, v) is the minimum distance
among all the possible links between task u and task v. Then the
next task is selected from those tasks with the minimum penalty
distance.

The performance of PSE is much better than PSR because
‘‘ellipse rule’’ is considered in PSE. The success of ‘‘ellipse rule’’ in
Eq. (2) shows that the situation of returning to the depot has to be
considered. Therefore, when the remaining space of the vehicle is
less than the average demand da of all tasks, the penalty distance
from the current task e to u and u to the depot need to be con-
sidered. The average demand da = td/ned, td is the total demand
of all tasks, ned is the number of tasks with a positive demand. In
this paper, non-smooth penalty is embedded into path-scanning
with random selection (PSR) and path-scanning with ellipse rule
(PSE) methods, then two new methods are proposed which are
path-scanning with random selection and non-smooth penalty
(PSRP Alg. 3) and path-scanning with ellipse rule and non-smooth
penalty (PSEP Alg. 4).

Algorithm 4 Path_scanning with ellipse rule and non-smooth
penalty (PSEP)

Input: candidate list {t1, t2, . . . , t2∗N(S)}, ti is the ith task, N(S) is the required
task number, max_ite is the maximum run times .

Output: a feasible solution Sbest
1: ite := 0, Sbest := ∅, S := ∅
2: while ite<max_ite do
3: S := ∅, add the task 0 to the S, set e := 0, reset candidate list
4: while candidate list is not empty do
5: start from e to find the next nearest tasks set U which satisfies smooth

condition and capacity constraint
6: if U is empty then
7: Add task 0 to S, set e := 0, rvc := Q , go to line 4.
8: end if
9: if rvc ≥ α × td/ned then
10: get the candidate tasks set U with smallest penalty distance.
11: else
12: get the candidate tasks set U with smallest penalty distance from e

to u and u to the depot and satisfied ellipse condition Eq. (2).
13: end if
14: select one task u randomly from U .
15: add u to S
16: Set e = u, rvc := rvc − demand(u)
17: delete u and u′ from the candidate list, u′ is the reverse task of u.
18: end while
19: if S better than Sbest then
20: Sbest := S
21: end if
22: end while

The comparison between two new path-scanning methods
ith PSR and PSE is shown in Table 2. The average deviation to
7

Table 2
Performance comparison among the existing and new path-scanning methods.

Av. deviation to LB(%)

gdb val egl

PSG 10.62 16.34 26.05
Total run = 1000
PSR(1000) 3.34 7.65 17.68
PSRP(1000) 1.32 5.35 10.12
PSE(1000) 1.53 4.84 10.05
PSEP(1000) 1.45 4.95 9.78
Total run = 10000
PSR(10000) 2.35 5.31 16.28
PSRP(10000) 0.80 3.89 9.04
PSE(10000) 1.07 3.44 8.92
PSEP(10000) 0.93 3.49 8.89

the lower bound cost is listed on three instance sets. The perfor-
mance comparison considers two different cases with maximum
running times, 1000 and 10000. The comparison results show
that PSRP and PSEP get better solutions than PSR and PSE in
most cases except for PSE on val instance set. PSRP is significantly
superior to PSR in three instance sets. It means that the non-
smooth penalty method significantly improves the performance
of path-scanning with random selection. On the gdb and egl
instance sets, PSEP performs better than PSE, but slightly worse
than PSEP in val instance set. It indicates that the non-smooth
penalty cannot improve the performance of path-scanning with
ellipse rule in any case. Comparing PSRP and PSEP, PSRP performs
better than PSEP in gdb instance set, but worse in val and egl
instance sets. It is possible to be caused by the large scale of val
and egl instance sets. There is no doubt that the results of the
maximum running 10000 times are better than those of 1000
times, but the improvement is not so significant. To save the
computing cost for comparable results, the maximum running
time is set as 1000. The non-smooth penalty does not introduce
any extra computational complexity to PSRP and PSEP, which is
still O(n2). Considering multiple runs for PSRP and PSEP, the final
computational complexity is O(max_ite∗n2), where max_ite is the
maximum running times of PSRP and PSEP. In general, PSRP and
PSEP are competitive construction algorithms and non-smooth
penalty is effective for path-scanning.

4. Memetic algorithm with non-smooth penalty (MANSP)

4.1. Partial reconstruction method for individual

The main idea of partial reconstruction method (PRM) is to
randomly select two routes from one solution, reconstruct them
with kernel method and insert them into the original solution.
This is possible that the construction algorithm can approach to
the optimal solution only on small scale problems. The experi-
ments in Section 5.1 have shown that none algorithm can gen-
erally deal with different problems properly. The same method
is firstly used in Merge-Split [27] algorithm, which selects 2 or
3 routes as sub-problem and reconstructs two routes by Path-
Scanning method. Considering that the construction algorithms
are only effective on small scale problems, two routes are cho-
sen from a solution to construct a new solution in this paper.
Referring to the practice of Merge-Split approach, a partial recon-
struction method for solutions is proposed as Alg. 5. It has several
alternative kernel algorithms that are different from Merge-Split.

Four heuristic algorithms mentioned in Section 2.3 and two
new methods mentioned in Section 3.2.2 are the candidate kernel
algorithms in the PRM framework. The experiment result shows

that none algorithm can get the lowest cost for all the instance

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

s
f
n
s

p
b

r
a
f
i
t
c

f
d
s
s
t
a

4

d
i
p
o
o
6

s
t
o
{
o
t
w

t
r

a

ets. It means that it is impossible for one algorithm to work well
or all the problems. So it is necessary to select the matching ker-
el algorithm for different specific problem. In order to choose the
uitable kernel algorithm, a hypothesis is presented as follows.
HYPOTHESIS: if a kernel algorithm works well on the whole

roblem, it works well on a partial problem with a high proba-
ility.
Therefore, we only need to check whether the kernel algo-

ithm can solve the whole problem well. The most matching
lgorithm for a certain problem is selected as the kernel algorithm
or this problem. So, this assumption will be verified empirically
n Section 5.3. The computational complexity of PRM depends on
he complexity of the kernel algorithm, and the computational
omplexity is O(n2).

Algorithm 5 Partial Reconstruction Method (PRM)

Input: a solution S, ite = 0
Output: an improved solution S
1: while ite<100 do
2: select two different routes Si, Sj ∈ S randomly,
3: remove Si, Sj from S and let Soldp = {Si, Sj}
4: construct a sub-CARP by Soldp
5: generate Snewp by solving sub-CARP with kernel algorithm
6: calculate the total cost of Snewp

7: if Snewp is better than Soldp then
8: S = {S − Soldp } ∪ Snewp
9: break;
10: end if
11: ite = ite+1
12: end while

4.2. Initialization and the kernel method selection

During the population initialization, six initial solutions are
irstly generated with six construction methods. Then the smooth
egrees of six solutions are computed and compared. The corre-
ponding construction method with the lowest smooth degree is
elected as the kernel method for the following PRM method in
he whole algorithm when solving one problem. Other solutions
re randomly initialized.

.3. Reinsertion method

As shown in Table 1 the total cost is possible to be further
ecreased by reducing the total number of routes when there
s no enough room to improve it. So the reinsertion method is
roposed to decrease the total number of routes. If all the tasks
f any route can be inserted into other routes, the total number
f routes is reduced accordingly. This method is described as Alg.
. The average computational complexity is O(n2).

Algorithm 6 Reinsert Method (RiM)

Input: a feasible solution S = {S1, S2, . . . , SN(S)}, Si is the ith route, k is randomly
selected or specified in {1, 2, . . . ,N(S)}

Output: a reinserted solution S I
1: for each task t in Sk do
2: find the best feasible insert position in all the other routes {Si, i ∈

{1, 2, . . . ,N(S)} ∧ i ̸= k} for t or rev(t)
3: move t from Sk to the feasible insert position
4: end for

However, it is possible that the number of routes in some
olutions cannot always be reduced. That is to say, it is not all
he routes of one solution that can be splitted and inserted into
ther routes. For example, a solution has demands {{1, 2}, {1, 2},
2, 3}, {1, 3}}, and capacity is 5. The first route is inserted into
ther routes which maybe {{1, 2, 2}, {2, 3}, {1, 1, 3}}. But neither
he third nor the fourth route can be inserted into other routes
ithout violating the constraint due to the demand 3 of a task.
8

Table 3
Comparison on average deviation to LB and Average smooth degree among
algorithms.

Av. deviation to LB(%) Av. smooth degree

gdb val egl gdb val egl

AM 12.72 17.60 10.10 1.40 1.72 4.73
PS 11.47 15.11 26.13 1.46 1.82 6.79
PSR 3.37 7.60 17.73 1.29 1.57 6.15
PSE 1.60 5.02 9.82 1.24 1.50 5.30
PSRP 1.24 5.57 10.25 1.23 1.52 5.40
PSEP 1.42 4.97 9.86 1.23 1.51 5.30

Table 4
Comparison on different penalty factor λ.

Av. deviation to the LB(%)

Value of λ 0 0.2 0.4 0.6 0.8 1 1.2
gdb 0.66 0.57 1.09 0.67 1.07 0.43 0.78
val 2.14 2.07 2.14 2.14 2.08 0.73 1.64
egl 5.70 5.62 5.56 5.63 5.69 3.34 5.36

Table 5
Parameters of MANSP.
Popsize Population size 30
I Max number of main loop 20000
pl Local search rate in main phase 0.2
max_ite The maximum rerun times of kernel methods 100
λ The penalty factor in Eqs. (5) and (6) 1

This phenomenon raises a question that if there is always a route
that can be inserted into other routes for any solution. At the
same time, it keeps the capacity constraints satisfied when the
total number of routes does not reach the minimum. More details
are given as below.

Assume that:

(1) A solution of CARP is denoted as S = {S1, S2, . . . , SN(S)},
Si = {ti1, ti2, . . . } is the ith route of S, tij is the jth task of Si.

(2) ∃S ′, s.t. N(S ′) = N(S)−1,N(S) > 1, which means that there
is a solution with fewer routes.

The question is that if there always exists a route in S which
can be inserted into other routes. A mathematical expression is
that, ∀S, if ∃Sm ∈ S, s.t. S I = RiM(Sm), and N(S I) = (N(S) − 1) ∧
(
∑|SIi |

j=1 dem(tj)) ≤ Q , ∀ S Ii ∈ S I . where RiM(Sm) represents that all
he tasks in Sm are inserted into other routes by Alg. 6 aiming at
educing the route number, and S Ii is the ith route of S I .

It is a pity that the answer is not true. Here is a counter ex-
mple. Supposing tasks have demands {1, 2, 3, 4, 5, 6, 7, 8}, and

capacity is 9. The demands of solution S are supposed to be {{1,7},
{2,6}, {3,5}, {4}, {8}} and the demands of solution S ′ are {{1,8},
{2,7}, {3,6}, {4,5}}. So none route of S can be inserted into other
routes of either S or S ′. It means that splitting and reinserting one
route into other routes does not always lead to a fewer routes
number. However, it is still a useful heuristic to reduce the route
number. In the reinsertion method of this paper, one route is ran-
domly selected and tried to insert into the others. The experiment
in Section 5.5 shows that the reinsertion method can improve
the probability of obtaining the global optimal solution of 233 for
gdb23 instance. So this method is a useful and beneficial strategy
and has a certain universality.

4.4. Memetic algorithm with non-smooth penalty (MANSP)

In MA [28] for CARP, a chromosome S is simply a sequence
of N tasks, without trip delimiters and with implicit shortest
paths between consecutive tasks. S can be viewed as a giant

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

t
h

t
o
t

4

(
h
c
c
n
s
p
a
f
k
T

5

e

Fig. 7. Comparison on construction algorithms on three instance sets.
1
1

k

rip ignoring capacity Q . Then the Split procedure of Ulusoy’s
euristic [22] is applied to S and a solution is obtained. Ulusoy’s

Split method is very useful to split the routes for CARP. The
fitness F (S) of S is the sum of the total cost and the non-smooth
penalty of this solution. Compared to traditional local search, an
MA works on a population of solutions whose crossover is based
on two solutions with a large neighborhood. This leads to the
intrinsic parallelism of MA.

An improved MA with the observed smooth or non-smooth
characteristic of arc routing problem is proposed in this paper to
reduce the possible number of routes and to enhance the general
performance. There are two questions to be considered here,

(1) If the number of routes is large, how to reduce it;
(2) If the number of routes is suitable, how to improve it.

The first question can be partially solved by Alg. 6 of reinsertion
method. The second question can be partially solved by Alg. 5 of
partial reconstruction method. For MA, the first question can also
be partially solved by improving the rate of individuals with small
route numbers. Before initializing the population, it is necessary
to decide which method will be chosen from AM, PS, PSR, PSE,
PSRP and PSEP as the kernel method. So a simple test is used
to determine the kernel method, and the best algorithm in the
test is used as the kernel method for this run. Then the general
framework of Memetic algorithm with non-smooth penalty is
presented as Alg. [39]. Due to the computational complexity of
crossover is O(n), the complexity of PRM and RiM are O(n2), and
he complexity of local search is O(n2), the computing complexity
f MANSP is O(I ∗ (n+ n2

+ n2
+ n2)) or O(I ∗ n2), where I is the

otal iteration number of main loop as Table 5.

.5. Convergence analysis of MANSP

The convergence properties of the canonical genetic algorithm
CGA) with mutation, crossover and proportional reproduction
as analyzed by Rudolph [44]. It has proved that a CGA will never
onverge to the global optimum regardless of the initialization,
rossover, operator and objective function by means of homoge-
eous finite Markov chain analysis. However, the variant of CGA is
hown to converge to the global optimum due to the irreducibility
roperty of the underlying original nonconvergent CGA if only it
lways maintains the best solution in the population, either be-
ore or after selection. Alg. [39] shows that the proposed MANSP
eeps the best solution found until now in the current population.
herefore, it can be seen that MANSP has convergence property.

. Experimental studies and comparison analysis

To evaluate the efficacy of the proposed algorithm MANSP,
xtensive experiments are carried out in this section. Firstly,
9

Algorithm 7 MA with non-smooth penalty (MANSP)

Input: G = (V , E)
Output: a solution S
1: Initialize population POP = {S i}, i ∈ {1, 2, . . . , popsize}
2: select the best kernel method from six candidate algorithms
3: while the termination condition is not met do
4: select S i, S j ∈ POP randomly
5: generate Sx by OX(S i, S j)
6: if rand(0,1)<pl then
7: improve S l by PRM(S l) (Alg. 5)
8: use traditional local search LS to improve S l
9: if ⌈ total cost

Q ⌉ <|S| then
0: generate S l by RiM(Sx) (Alg.6)
1: use traditional local search LS to improve S l

12: else
13: S l ← Sx
14: end if
15: if fitness(S l) < fitness(Sx) then
16: Sx ← S l
17: end if
18: end if
19: sort POP in increasing order
20: randomly choose k ∈ [popsize/2, popsize]
21: if Sx ⪯ Sk or N(Sx) ≤ N(Sk) then
22: Sk ← Sx
23: end if
24: end while

smooth degrees of six construction algorithms (four traditional
(PS, AM, PSR, PSE) and two new (PSRP, PSEP)) are analyzed.
Secondly, the crucial parameter of non-smooth penalty factor
and the possible kernel algorithms are discussed. Thirdly, the
competitive performance of MANSP algorithm is compared with
several state-of-the-art algorithms. The effect of reinsert method
is also verified in Section 5.5. All the experiments were conducted
on three benchmark sets of CARP instances: gdb [43], val [45]
and egl instance sets [46]. When comparing with the most well-
nown algorithm MAENS [27], bmcv [25] instance set including

four subsets and each of which has 25 instances is also adopted.
All the experiments were executed on a 3.7 GHz i5-9600K PC
under Ubuntu 18.04.4 by C++.

5.1. Smooth degree of construction algorithms

Four traditional (AM, PS, PSR, PSE) and two new (PSRP, PSEP)
construction algorithms are studied and the comparison results
are shown in Table 3 and Fig. 7. It aims to find an algorithm with
lowest smooth degree and the comparison results are shown in
Table 3. AM and PS does not need to be run multiple times. The
maximum iteration is set as 500 for PSR, PSE, PSRP and PSEP.

The left part of Fig. 7 is the average deviation of these algo-
rithms against LB in each instance set, and the right part indicates
the average smoothness comparison. Fig. 7 shows the comparison
results more intuitively. Observed from Table 3 and Fig. 7, PSE,

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

o
p

e
c
t
r
e
k

5

p
T
o
d
o
p
i

h
r
λ

T
C
m
i

t
t
r
i
r
i
f

a
b
c
w

3
m
m
t
e
s

M
p
M
w
r
c

Fig. 8. The trend line of average deviation to LB(%) for different penalty factor.

Fig. 9. Comparison on average deviation to the lower bound among six
algorithms.

PSEP and PSRP obtains lowest average deviation to the lower
bound and smooth degree values on all three instance sets. Espe-
cially in the gdb instances set, PSRP achieves much lower average
deviation to LB than others. So PSRP is more suitable to be used to
enhance the individual after reinsert operation for gdb instances
set. Similarly, algorithm PSEP is suitable for instances set val, and
algorithm PSE is suitable for egl. It needs to be mentioned that
AM gets the lowest smooth degree in the egl instances set, and
btains rather good solutions. This shows that algorithm AM can
roduce solutions with good smoothness on egl instances set.
In general, the newly proposed construction algorithms have

ncouraging effects. At the same time, both groups of numerical
omparison results also guide which algorithm will be used as
he kernel method for the following PRM. At the same time, the
esults show that different construction algorithms have differ-
nt performance on different problems. Therefore, the choice of
ernel method depends on the specific problems.

.2. Discussion on penalty factor parameters

This section analyzes the influence of the crucial penalty factor
arameter in Eq. (5) and (6) of the proposed MANSP algorithm.
here are seven choices for parameter λ from 0 to 1.2 with a step
f 0.2. The numerical comparison and the trend lines of average
eviation to the LB(%) for different penalty factor parameters
n three instance sets are shown in Table 4 and Fig. 8. Other
arameters of MANSP are shown in Table 5 which were suggested
n [28].

Observed from Fig. 8 it can be seen that smaller parameters
ave little effects on the algorithmic performance and the best
esults are obtained when λ = 1. Therefore, the default setting of
is 1 without special explanation in the later discussion.
10
able 6
omparison among MANSP_AM, MANSP_PS and MANSP_PSEP on three bench-
ark sets, ‘min’, ‘mean’ and ‘std’ are the minimum, mean and standard deviation

n 30 runs.

Instance MANSP_AM MANSP_PS MANSP_PSEP

Min Mean Min Mean Min Mean

gdb13 536 536.0 536 539.1 538 542.7
gdb23 233 233.0 233 233.0 235 235.0
val5D 583 594.4 583 590.4 582 591.2
val8C 523 534.0 527 529.3 526 534.5
val9C 332 332.0 332 332.0 333 335.4
val9D 393 395.5 391 392.1 391 396.1
val10D 530 535.5 530 534.7 533 537.5
egl-e1-B 4524 4536.1 4501 4527.3 4498 4507.6
egl-e2-B 6323 6361.0 6317 6344.4 6317 6335.0
egl-e3-B 7789 7850.1 7787 7805.0 7777 7795.9
egl-e3-C 10292 10402.2 10303 10333.2 10305 10341.5
egl-e4-A 6478 6503.1 6461 6482.6 6464 6464.7
egl-e4-B 9009 9107.2 9005 9052.7 9000 9049.3
egl-e4-C 11724 11817.3 11629 11713.4 11643 11731.3
egl-s2-A 10053 10150.4 9918 9989.2 9907 9952.4
egl-s2-B 13352 13456.8 13236 13327.3 13242 13314.4
egl-s2-C 16607 16807.0 16535 16626.1 16437 16603.1
egl-s3-A 10325 10417.2 10290 10366.4 10262 10325.8
egl-s3-B 13904 14072.6 13909 13966.4 13786 13911.4
egl-s3-C 17413 17591.1 17309 17426.7 17260 17345.6
egl-s4-A 12467 12606.1 12432 12481.6 12409 12469.5
egl-s4-B 16496 16624.5 16487 16544.5 16416 16482.0
egl-s4-C 20806 20966.7 20679 20874.9 20706 20826.9

5.3. Discussion on the kernel algorithm

In Section 4.1, the hypothesis indicates that if a kernel algo-
rithm works well on the whole problem, it is able to work well
on a sub-problem. Due to the sub-problem space is too large to
check, the final result of the whole problem is used for checking
the kernel algorithm instead of the sub-problem. Therefore, the
hypothesis is transformed into: if algorithm A performs better
han algorithm B on the whole problem, it will get better result
han B in the final solution on the sub-problem. Because the
esults of four algorithms (PSE, PER, PSRP, PSEP) are similar, PSE
s chosen as the representative for simplicity. The comparison
esults on three instance sets are shown in Table 6. Similarly, the
nstances comparison are not provided here with the same results
or four algorithms.

Observed from Table 6, MANSP_AM and MANSP_PS perform
bit better than MANSP_PSE on the gdb instances set, but the
est construction method is PSEP in Table 3. The comprehensive
omparison results in Tables 3 and 6 show a little inconsistency
ith the assumption.
MANSP_AM, MANSP_PS and MANSP_PSEP obtain 2, 3 and
best results, respectively, in Table 6. The best construction
ethod is PSE in Table 3. It indicates that the most matching
ethod gets the best solution with high probability. However,

he rest two methods cannot perfectly suit the proposed and
mpirically verified hypothesis and three algorithms have no
ignificant superiority among each other.
On the egl set, MANSP_PSEP performs much better than

ANSP_AM and MANSP_PS. It is a strong support to the hy-
othesis together with the results of Table 3. At the same time,
ANSP_PS outperforms MANSP_AM on the egl instances set
hich further confirms the assumption. All in all, the simulation
esults are basically in line with the proposed hypothesis indi-
ated in Section 4.1. So we can draw a conclusion that a kernel

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C
f

‘

a
w
k
i

5

f
s
i
n

s
n
o
t
c
w
n
u
s
V
T
s
p
i
a

able 7
omparison results on the gdb benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the success time of
inding the lower bound LB [47–49].

Instance (|N|, |E|) LB PT VND LMA MAENS QICA MANSP

Min Mean Std NS

gdb1 (12,22) 316 316 316 316 316∼ 316∼ 316 316.0 0.0 30
gdb2 (12,26) 339 339 339 339 339∼ 339∼ 339 339.0 0.0 30
gdb3 (12,22) 275 275 275 275 275∼ 275∼ 275 275.0 0.0 30
gdb4 (11,19) 287 287 287 287 287∼ 287∼ 287 287.0 0.0 30
gdb5 (13,26) 377 377 377 377 377∼ 377∼ 377 377.0 0.0 30
gdb6 (12,22) 298 298 298 298 298∼ 298∼ 298 298.0 0.0 30
gdb7 (12,22) 325 325 325 325 325∼ 325∼ 325 325.0 0.0 30
gdb8 (27,46) 348 348 350 350 348∼ 348∼ 348 350.5 1.0 6
gdb9 (27,51) 303 303 315 303 303∼ 303∼ 303 306.2 3.0 7
gdb10 (12,25) 275 275 275 275 275∼ 275∼ 275 275.0 0.0 30
gdb11 (22,45) 395 395 395 395 395∼ 395∼ 395 395.0 0.0 30
gdb12 (13,23) 458 458 458 458 458∼ 458∼ 458 458.0 1.0 27
gdb13 (10,28) 536 538 544 536 536∼ 536∼ 536 536.0 0.0 30
gdb14 (7,21) 100 100 100 100 100∼ 100∼ 100 100.0 0.0 30
gdb15 (7,21) 58 58 58 58 58∼ 58∼ 58 58.0 0 30
gdb16 (8,28) 127 127 127 127 127∼ 127∼ 127 127.0 0.0 30
gdb17 (8,28) 91 91 91 91 91∼ 91∼ 91 91.0 0 30
gdb18 (9,36) 164 164 164 164 164∼ 164∼ 164 164.0 0.0 30
gdb19 (11,11) 55 55 55 55 55∼ 55∼ 55 55.0 0 30
gdb20 (11,22) 121 121 121 121 121∼ 121∼ 121 121.0 0.0 30
gdb21 (11,33) 156 156 156 156 156∼ 156∼ 156 156.0 0.0 30
gdb22 (11,44) 200 200 200 200 200∼ 200∼ 200 200.0 0.0 30
gdb23 (11,55) 233 235 235 233 233∼ 233∼ 233 233.0 0.0 30
21 19 22 23 23 23
% 0.05 0.03 0.02 0 0 0

‘‘#’’ represents the times of algorithms that find the lower bound.
‘‘%’’ represents the average deviation to the LB(%).
‘‘∼’’ indicates that there is no significant difference between MAENS/QICA and MANSP.
‘‘↓’’ indicates that MAENS/QICA is significantly better than MANSP (p < 0.05).
‘↑’’ indicates that MAENS/QICA is significantly worse than MANSP (p < 0.05).
i
a
f
o
T
L

lgorithm works well on the whole problem and then it will work
ell on a sub-problem with a high probability. An even suitable
ernel algorithm is possible to get an even bigger performance
mprovement.

.4. Performance comparison with state-of-the-art algorithms

Extensive experiments were conducted to illustrate the per-
ormance of MANSP algorithm. Firstly, MANSP is comprehen-
ively compared with several state-of-the-art algorithms. Then
t proves that the proposed RiM method is necessary for the
on-smooth problem and the final performance of algorithm.
These experiments are firstly conducted on two benchmark

ets of undirected instances gdb and val in which only edge tasks
eed to be served. Another experimental comparison is done
n a mix instance set egl with edge tasks and arc tasks. All
hese instances can be obtained at http://www.uv.es/~belengue/
arp.html. The proposed MANSP is also comparatively verified
ith bmcv benchmark [25], which is based on the intercity road
etwork in Flanders and can be found in https://logistik.bwl.
ni-mainz.de/forschung/benchmarks. MANSP is compared with
tate-of-the-art algorithms of CARPET [23] (abbreviated as PT),
ND [24], LMA [28] and the well-known MAENS [27], QICA [32].
he bmcv [25] benchmark instances set, which contains four
ubsets and each of which has 25 instances is adopted to com-
are with MAENS and QICA. Wilcoxon rank sum statistical test
s used to show whether there are significant difference among
lgorithms.
11
The average gap to the lower bound [50] of these algorithms
s summarily illustrated in Fig. 9. This figure shows that MANSP
chieves the best lower average deviation to the lower bound in
our instance sets. It shows the general even better performance
f MANSP when comparing with the state-of-the-art competitors.
here are no VND results for egl instance and no PT, VND and
MA results for bmcv. The performance of the algorithm on these
instance sets is then discussed specifically in more detail.

5.4.1. gdb
The gdb benchmark set contains 23 instances from DeAr-

mon [43] with 7 to 27 nodes and 11 to 55 edges. Experimental
comparison results are presented in Table 7, in which (|N|,|E|)
represent the total numbers of nodes and edges respectively.
The ‘‘LB’’ item is the lower bound [47–49]. The proposed MANSP
algorithm runs 30 times on each instance. The ‘‘min’’, ‘‘mean’’,
‘‘std’’ are the minimum total cost, the mean total cost, and the
standard deviation of the 30 final results. ‘‘NS’’ stands for the
number of success.

Comparing MANSP with VND and LMA, it finds a better result
on instance gdb8, which is the known optimal result. Comparing
MANSP to PT and VND on instances gdb13 and gdb23, it gets the
optimal results and both competitors fall into the local trap. These
simulation results show that the proposed MANSP algorithm can
solve the non-smooth problem perfectly. MANSP gets all the best
known results for all the instances. The computing results on
instances gdb8 and gdb9 show that there is still improving space
for MANSP. But it shows great improvement when comparing
with PT, VND and LMA, especially for LMA on instances gdb11,

http://www.uv.es/~belengue/carp.html
http://www.uv.es/~belengue/carp.html
http://www.uv.es/~belengue/carp.html
https://logistik.bwl.uni-mainz.de/forschung/benchmarks
https://logistik.bwl.uni-mainz.de/forschung/benchmarks
https://logistik.bwl.uni-mainz.de/forschung/benchmarks

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C
f

‘
‘

g
N
L
t
o
a
F
o
a
r
‘
t
b
d
H
a

able 8
omparison results on the val benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the success time of
inding the lower bound LB [47–49].

Instance (|N|, |E|) LB PT VND LMA MAENS QICA MANSP

Min Std Min Mean Std NS

val1A (24,39) 173 173 173 173 173∼ 173∼ 0.0 173 173.0 0.0 30
val1B (24,39) 173 173 178 173 173∼ 173∼ 4.2 173 173.0 0.0 30
val1C (24,39) 245 245 248 245 245∼ 245∼ 2.1 245 245.0 0.0 29
val2A (24,34) 227 227 227 227 227∼ 227∼ 6.8 227 227.0 0.0 30
val2B (24,34) 259 260 259 259 259∼ 259∼ 2.7 259 259.0 0.0 30
val2C (24,34) 457 494 457 457 457∼ 457∼ 3.6 457 460.7 2.1 11
val3A (24,35) 81 81 81 81 81∼ 81∼ 1.7 81 81.0 0.0 30
val3B (24,35) 87 87 87 87 87∼ 87∼ 2.0 87 87.0 0.0 30
val3C (24,35) 138 138 140 140 138∼ 138∼ 0.9 138 138.0 0.0 28
val4A (41,69) 400 400 400 400 400∼ 400∼ 4.7 400 400.0 0.0 30
val4B (41,69) 412 416 414 414 412∼ 412∼ 4.4 412 412.0 0.0 30
val4C (41,69) 428 453 428 428 428∼ 428∼ 5.8 428 428.1 2.0 6
val4D (41,69) 526 556 544 544 530∼ 530∼ 3.4 530 537.9 3.1 1
val5A (34,65) 423 423 423 423 423∼ 423∼ 5.1 423 423.0 0.0 30
val5B (34,65) 446 448 449 449 446∼ 446∼ 1.2 446 446.0 0.0 30
val5C (34,65) 473 476 474 474 474∼ 474∼ 1.1 474 474.0 0.0 30
val5D (34,65) 573 607 599 599 577↓ 577↓ 3.7 583 590.4 3.0 1
val6A (31,50) 223 223 223 223 223∼ 223∼ 2.5 223 223.0 0.0 30
val6B (31,50) 233 241 233 233 233∼ 233∼ 2.1 233 233.0 0.0 30
val6C (31,50) 317 329 325 325 317∼ 317∼ 1.9 317 318.0 2.0 22
val7A (40,66) 279 279 279 279 279∼ 279∼ 4.4 279 279.0 0.0 30
val7B (40,66) 283 283 283 283 283∼ 283∼ 5.0 283 283.0 0.0 30
val7C (40,66) 334 343 335 335 334∼ 334∼ 3.0 334 334.2 0.0 26
val8A (30,63) 386 386 386 386 386∼ 386∼ 6.0 386 386.0 0.0 30
val8B (30,63) 395 401 403 403 395∼ 395∼ 3.1 395 395.0 0.0 30
val8C (30,63) 518 533 543 543 521∼ 521∼ 4.2 523 534.0 4.3 1
val9A (50,92) 323 323 323 323 323∼ 323∼ 2.6 323 323.0 0.0 30
val9B (50,92) 326 329 326 326 326∼ 326∼ 2.4 326 326.0 0.0 30
val9C (50,92) 332 332 336 336 332∼ 332∼ 2.5 332 332.0 0.0 29
val9D (50,92) 385 409 399 399 391∼ 391∼ 1.8 393 395.5 2.7 7
val10A (50,97) 428 428 428 428 428∼ 428∼ 2.8 428 428.0 0.0 29
val10B (50,97) 436 436 436 436 436∼ 436∼ 1.1 436 436.0 0.0 23
val10C (50,97) 446 451 446 446 446∼ 446∼ 1.3 446 446.0 0.0 22
val10D (50,97) 525 544 538 538 531↑ 527↓ 2.4 530 535.5 2.4 1
17 19 21 28 28 29* 28
% 1.52 0.86 0.74 0.08 0.13 0.06

‘‘#’’ represents the times of algorithms that find the lower bound.
‘‘%’’ represents the average deviation to the LB(%).
‘‘∼’’ indicates that there is no significant difference between MAENS/QICA and MANSP.
‘‘↓’’ indicates that MAENS/QICA is significantly better than MANSP (p < 0.05).
‘↑’’ indicates that MAENS/QICA is significantly worse than MANSP (p < 0.05).
‘*’’ indicates the number of instances that std value of QICA is larger than that of MANSP.
T
t

5

5
T
n

t
t
o
k
W
M
b
t

db13 and gdb23, in which LMA needs to restart many times. The
S items show the numbers that MANSP achieves the low bound
B directly at each run on each instance. The second line from
he bottom of Table 7 represents the success times of getting the
ptimal solutions which indicates that MANSP performs as well
s the well-known MAENS and better than other competitors.
urthermore, as the results of MANSP are comparable with those
f MAENS, Wilcoxon rank sum test is used to show whether there
re significant difference among them. ‘‘↑’’ indicates that the
esults of MANSP are significantly better than those of MAENS,
‘↓’’ represents the results of MANSP significantly worse than
hose of MAENS, ‘‘∼’’ means that there is no significant difference
etween them. Statistical test shows that there is no statistic
ifference between MAENS, QICA and MANSP in gdb instance set.
owever, the much larger ‘‘std" items of QICA means that the
verage results of QICA are much worse than those of MANSP.
12
he last line show the average deviation to LB. MANSP can find
he best solutions for all the instances in gdb instance set.

.4.2. val test set
The val benchmark set [45] contains 34 instances with 24 to

0 nodes and 39 to 97 edges. Experimental results are given in
able 8. As the smooth degree analysis, this instance set also
eeds the proposed MANSP being hybridized with PSE method.
Table 8 shows that MANSP can find the best solutions on

he majority val instances. Generally speaking, MANSP gets all
he optimal solutions on 28 instances indicating as the last row
f Table 8. MANSP achieves as good performance as the well-
nown MAENS and significantly outperforms other competitors.
hen comparing with MAENS detailedly, MAENS outperforms
ANSP on instances val5D, val8C and val9D and is outperformed
y MANSP on instance val10D. It should be pointed out that
hese four instances are the most difficult in the val instance set

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C
f

‘
‘

a
c
s
o
s
a
t
o
b

5

o
b
I
h
f
g
i
s
i
T
t

o
o
h

able 9
omparison results on the egl benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the success time of
inding the lower bound LB [47–49].

Instance (|N|, |E|, |T|) LB PT LMA MAENS QICA MANSP

Min Std Min Mean Std NS

e1-A (77,98,51) 3548 3625 3548 3548∼ 3548∼ 19.1 3548 3548.0 0.0 30
e1-B (77,98,51) 4498 4532 4498 4498∼ 4498∼ 15.9 4498 4507.6 11.2 16
e1-C (77,98,51) 5566 5663 5595 5595∼ 5595∼ 25.5 5595 5616.4 14.1 4
e2-A (77,98,72) 5018 5233 5018 5018∼ 5018∼ 1.6 5018 5019.8 3.0 26
e2-B (77,98,72) 6305 6422 6340 6317∼ 6314∼ 20.6 6317 6335.0 17.8 11
e2-C (77,98,72) 8243 8603 8415 8335∼ 8335∼ 28.8 8335 8346.6 7.0 5
e3-A (77,98,87) 5898 5907 5898 5898∼ 5898∼ 34.8 5898 5898.4 2.2 26
e3-B (77,98,87) 7704 7921 7822 7775∼ 7775∼ 20.8 7777 7795.9 8.2 1
e3-C (77,98,87) 10163 10805 10433 10292∼ 10292∼ 21.5 10292 10341.5 43.1 8
e4-A (77,98,98) 6408 6489 6461 6456∼ 6456∼ 25.6 6446 6464.7 0.0 29
e4-B (77,98,98) 8884 9216 9021 8998↑ 8975↓ 25.8 8988 9049.3 21.3 1
e4-C (77,98,98) 11427 11824 11779 11561∼ 11567∼ 37.6 11643 11731.3 50.0 3
s1-A (140,190,75) 5018 5149 5018 5018∼ 5018∼ 40.6 5018 5018.0 0.0 30
s1-B (140,190,75) 6384 6641 6435 6388∼ 6388∼ 21.1 6388 6412.9 18.8 10
s1-C (140,190,75) 8493 8687 8518 8518∼ 8518∼ 22.4 8518 8518.7 0.0 29
s2-A (140,190,147) 9824 10373 9995 9895∼ 9909∼ 43.3 9907 9952.4 25.2 1
s2-B (140,190,147) 12968 13495 13174 13147∼ 13110↓ 68.0 13242 13314.4 38.3 1
s2-C (140,190,147) 16353 17121 16795 16430∼ 16425∼ 39.2 16437 16603.1 78.2 1
s3-A (140,190,159) 10143 10541 10296 10257∼ 10221↓ 44.4 10262 10325.8 27.1 1
s3-B (140,190,159) 13616 14291 14053 13749∼ 13692∼ 63.3 13786 13911.4 68.7 1
s3-C (140,190,159) 17100 17789 17297 17207∼ 17214∼ 36.4 17260 17345.6 42.6 1
s4-A (140,190,190) 12143 13036 12442 12341↓ 12265↓ 56.8 12409 12469.5 26.3 1
s4-B (140,190,190) 16093 16924 16531 16337↓ 16262↓ 57.9 16416 16482.0 35.2 1
s4-C (140,190,190) 20375 21486 20832 20538↓ 20505↓ 87.5 20706 20826.9 52.4 1
0 5 5 5 17* 5
% 3.36 1.12 0.44 0.33 0.61

‘‘#’’ represents the times of algorithms that find the lower bound.
‘‘%’’ represents the average deviation to the LB(%).
‘‘∼’’ indicates that there is no significant difference between MAENS/QICA and MANSP.
‘‘↓’’ indicates that MAENS/QICA is significantly better than MANSP (p < 0.05).
‘↑’’ indicates that MAENS/QICA is significantly worse than MANSP (p < 0.05).
‘*’’ indicates the number of instances that std value of QICA is larger than that of MANSP.
T
S

nd none existing algorithm can get their lower bounds. When
omparing with other competitors, MANSP gets even better re-
ults on 16/12/12 instances than PT, VND and LMA and is not
utperformed by any of them on any instance. Statistical test
hows that there are no significant difference between MANSP
nd MAENS/QICA on val instance set. But the results show that
he standard deviations of QICA are larger than those of MANSP
n 27 instances, which means that MANSP performs not only as
etter as QICA but also more stable.

.4.3. egl test set
Table 9 shows the performance comparison among algorithms

n the egl instance set, which was generated by Eglese [46]
ased on data from a winter gritting application in Lancashire.
t consists of 24 instances based on two graphs, each of which
as a distinct set of required edges and capacity constraints. The
irst graph includes instances from e1-A to e4-C and the second
raph includes instances from S1-A to S4-C. Each graph has 12
nstances. VND [24] did not provide the simulation results on egl
et and it is not provided here. Different from the gdb and val
nstance sets, not all the edges are the tasks in egl instance set.
he (|N|, |E|, |T|) presents the node number, the edge number and
he task number respectively.

First of all, MANSP outperforms PT on all the instances. Sec-
ndly, MANSP outperforms LMA on 15 of 24 instances and is
utperformed by LMA on only two instances. Thirdly, MANSP
as comparable performance with MAENS on all 12 instances of
13
able 10
ummary comparison of average deviation to LB on the bmcv instances set.

MAENS QICA MANSP

bmcv-C 0.33 0.30 0.31
bmcv-D 0.37 0.99 0.36
bmcv-E 0.31 0.23 0.31
bmcv-F 0.16 0.20 0.10
mean 0.34 0.51 0.33

the first graph. However, it is outperformed by MAENS on the
second graph. Even for MAENS, it also has the obvious difference
with ‘‘LB’’, which indicates that the instances based on the sec-
ond graph are very difficult and they are challenging the future
optimization solvers. Statistical test shows that MANSP is slightly
better than MAENS on the first graph and MANSP is slightly worse
than MAENS on the second graph for the egl instance set.

QICA is a little better than MAENS on 6 instances. But the
standard deviations of QICA are also larger than those of MANSP
on 17 instances. It means that MANSP is once again more stable
than QICA in egl instance set.

5.4.4. bmcv test set
The bmcv [25] benchmark set is used to further compare the

similarities and differences between the proposed MANSP and the
state-of-the-art algorithm MAENS [27] and QICA [32]. It is based

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

s

Table 11
Comparison between MANSP and MANSP_without_RIM on three benchmark sets, ‘min’, ‘mean’, ‘std’
are the minimum, mean and standard deviation values of 30 results.

Instance MANSP MANSP_without_RiM

Min Mean Std Min Mean Std

gdb8 348 350.5 1 348 351.0 2
gdb9 303 306.2 3 303 308.1 3
val4D 530 537.9 3 536 540.4 3
val5D 583 590.4 3 587 595.7 4
val8C 523 534.0 4 528 536.1 3
egl-e1-B 4498 4507.6 11 4524 4539.4 10
egl-e1-C 5595 5616.4 14 5609 5648.3 28
egl-e2-B 6317 6335.0 17 6344 6368.1 20
egl-e2-C 8335 8346.6 7 8343 8445.7 64
egl-e3-B 7777 7795.9 8 7789 7870.4 54
egl-e4-A 6464 6464.7 0 6475 6500.6 20
egl-e4-B 9000 9049.3 21 9063 9134.4 55
egl-s1-C 8518 8518.7 0 8526 8612.3 42
egl-s2-A 9907 9952.4 25 10072 10162.2 43
egl-s2-B 13242 13314.4 38 13310 13443.7 89
egl-s2-C 16437 16603.1 78 16598 16832.1 85
egl-s3-A 10262 10325.8 27 10334 10428.4 59
egl-s3-B 13786 13911.4 68 13818 14067.5 82
egl-s3-C 17260 17345.6 42 17391 17603.9 121
egl-s4-A 12409 12469.5 26 12483 12638.0 88
egl-s4-B 16416 16482.0 35 16433 16647.2 110
egl-s4-C 20706 20826.9 52 20784 20951.1 88
≤ 22 22 2 0
Table 12
Comparison results on the C subset in BMCV benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the
ucceeding number of finding the lower bound LB [47–49].

Instance LB MAENS QICA MANSP

Repaired Published Offset Min Mean Std NS

C1 4150 4150∼ 1660 2490 4150∼ 4150 4209.5 27 4
C2 3135 3135∼ 1095 2040 3135∼ 3135 3158.2 23 0
C3 2575 2575∼ 925 1650 2575∼ 2575 2582.3 4 0
C4 3478 3510∼ 1340 3510 3510∼ 3510 3511.3 3 0
C5 5365 5365∼ 5365 2895 5365∼ 5365 5402 34 0
C6 2535 2535∼ 895 1640 2535∼ 2535 2549.5 14 5
C7 4075 4075∼ 1795 2280 4075∼ 4075 4075 0 0
C8 4090 4090∼ 1730 2360 4090∼ 4090 4091.7 8 0
C9 5233 5270↑ 1830 3440 5260∼ 5260 5305.2 21 0
C10 4700 4700∼ 2270 2430 4700∼ 4700 4726.5 16 3
C11 4583 4630∼ 1805 2825 4640∼ 4640 4705.8 31 0
C12 4209 4240∼ 1610 2630 4240∼ 4240 4244.3 11 0
C13 2955 2955∼ 1110 1845 2955∼ 2955 2955.7 1 0
C14 4030 4030∼ 1680 2350 4030∼ 4030 4041.8 15 0
C15 4912 4940↓ 1860 1860 4940↓ 4950 4986.5 12 0
C16 1475 1475∼ 585 890 1475∼ 1475 1478.7 6 0
C17 3555 3555∼ 1610 1945 3555∼ 3555 3563.8 10 0
C18 5577 5660↑ 2425 3235 5620↓ 5630 5657.3 15 0
C19 3096 3115∼ 1395 1720 3120↑ 3115 3119.8 0 0
C20 2120 2120∼ 665 1455 2120∼ 2120 2122.3 4 0
C21 3960 3970∼ 1725 2245 3970∼ 3970 3970 0 0
C22 2245 2245∼ 1070 1175 2245∼ 2245 2245 0 0
C23 4032 4095↑ 1700 2395 4085∼ 4085 4141 30 0
C24 3384 3400∼ 1360 2040 3400∼ 3400 3406.8 6 0
C25 2310 2310∼ 905 1405 2310∼ 2310 2320 14 0
% 0.33 0.30 0.31

‘‘%’’ represents the average deviation to the LB(%).
14

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C

i
o
s
w
n
t
t
h

b
p
T
i
v

s
o
M
i
7
S
t
5
s
i
a

g

able 13
omparison results on the D subset in BMCV benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the

succeeding number of finding the lower bound LB [47–49].

Instance LB MAENS QICA MANSP

Repaired Published Offset Min Mean Std NS

D1 3215 3230∼ 740 2490 3215↓ 3230 3234.8 0 0
D2 2520 2520∼ 480 2040 2520∼ 2520 2520 0 0
D3 2065 2065∼ 415 1650 2065∼ 2065 2065 0 0
D4 2785 2785∼ 615 2170 2785∼ 2785 2785 0 0
D5 3935 3935∼ 1040 2895 3935∼ 3935 3935 0 0
D6 2125 2125∼ 485 1640 2125∼ 2125 2125 0 0
D7 3078 3115↓ 835 2280 3125∼ 3125 3140 17 0
D8 2995 3045∼ 685 2360 3045∼ 3045 3064.2 14 3
D9 4120 4120∼ 680 3440 4120∼ 4120 4120 0 0
D10 3335 3340∼ 910 2430 3330↓ 3340 3340 0 0
D11 3745 3755 930 2825 3715↓ 3760 3760 0 0
D12 3310 3310∼ 680 2630 3310∼ 3310 3310 0 0
D13 2535 2535∼ 690 1845 2535∼ 2535 2535 0 0
D14 3272 3280∼ 930 2350 3272↓ 3280 3280 0 0
D15 3990 4000∼ 920 3080 3990↓ 3995 4000 1 0
D16 1060 1060∼ 170 890 1260↑ 1060 1061 4 0
D17 2620 2620∼ 675 1945 2620∼ 2620 2620 0 0
D18 4165 4185↑ 950 4165 4165∼ 4165 4170.8 10 0
D19 2393 2400∼ 680 1720 2393↓ 2400 2400 0 0
D20 1870 1870∼ 415 1455 1870∼ 1870 1870 0 0
D21 2985 3055∼ 810 2245 3045↓ 3055 3074.3 19 0
D22 1865 1865∼ 690 1175 1865∼ 1865 1865 0 0
D23 3114 3130∼ 735 2395 3130∼ 3130 3147.2 6 0
D24 2676 2710∼ 670 2040 2710∼ 2710 2710 0 0
D25 1815 1815∼ 410 1405 1815∼ 1815 1815 0 0
% 0.37 0.99 0.36

‘‘%’’ represents the average deviation to the LB(%).
on the intercity road network in Flanders which can be found
in https://logistik.bwl.uni-mainz.de/forschung/benchmarks. Bmcv
nstance set contains four subsets, namely, sets C, D, E, and F, each
f which contains 25 instances. Instances of sets D and F share the
ame networks with instances of sets C and E, respectively, but
ith larger capacities of vehicles. But the results of MAENS [27]
eed to add the offset. The first column of MAENS provides
he repaired results and the second column of MAENS provides
he raw results. The better results of MANSP and MAENS are
ighlighted in bold.
The comparison results among MANSP, MAENS and QICA on

mcv benchmark set are presented in Tables 12–15 in the Ap-
endix. The LB represents the lower bound found in [47–49].
able 10 shows the average deviation values to LB. Table 10
ndicates that MANSP gets the lowest mean average deviation
alues over all four subsets and 100 instances.
Table 12 shows that MANSP is better than MAENS on 3 in-

tances and worse on 2 instances. MANSP is better than QICA
n 1 instances and worse on 2 instances. Table 13 shows that
ANSP is better than MAENS on 2 instances and worse on 2

nstances. MANSP is better than QICA on 1 instances and worse on
instances. But for instance D16, QICA got a very poor solution.
o QICA got the largest average deviation values. Table 14 shows
hat MANSP is better than MAENS on 3 instances and worse on
instances. MANSP is worse than QICA on 5 instances. Table 15
hows that MANSP is better than MAENS on 2 instances. MANSP
s worse than QICA on 2 instances and MANSP gets the lowest
verage deviation values.
Overall, the proposed MANSP and the state-of-the-art MAENS

et the same performance on most of the instances. MANSP is
15
better than MAENS on 10 instances and worse on 9 instances.
It shows that MANSP performs very competitive even when it
compares with the most state-of-the-art algorithms.

5.5. Effect verification of reinsertion method

Memetic algorithm with non-smooth penalty (MANSP) per-
forms powerful competitiveness. This section will empirically
prove the necessity of the proposed reinsert operator which aims
to reduce the route number. For all the instances of three instance
sets, only those instances that MANSP and MANSP_without_RiM
obtain different results are provided in Table 11, where
MANSP_without_RiM is the MANSP algorithm without RiM op-
erator and all others remain the same.

Generally speaking, MANSP outperforms MANSP_without_RiM
on all these provided instances with different experimental re-
sults. Observed from Table 11, all the ‘‘std’’ items of
MANSP_without_RiM are larger than those of MANSP, which
means that MANSP with reinsert operator is more stable. This
group of comparison results show that reinsertion method can
not only improve the performance of algorithm but also increase
its stability.

6. Conclusion

According to the observed characteristics of arc routing prob-
lem, smooth condition is proposed and constructed as a rule
which divides the link between two tasks into smooth link and
non-smooth link. To extend smooth link to the whole solution,
smooth degree is defined to measure the quality of solution.

https://logistik.bwl.uni-mainz.de/forschung/benchmarks

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C
s

s
(
a
T
R
s
M
E
s
p
s

i
t
t
q
b

able 14
omparison results on the E subset in BMCV benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the
ucceeding number of finding the lower bound LB [47–49].

Instance LB MAENS QICA MANSP

Repaired Published Offset Min Mean Std NS

E1 4885 4910∼ 1935 2975 4910↓ 4915 4985.8 60 0
E2 3990 3990∼ 1610 2380 3990∼ 3990 4030.2 37 0
E3 2015 2015∼ 750 1265 2015∼ 2015 2015 0 0
E4 4155 4155∼ 1610 2545 4155∼ 4155 4244.2 17 0
E5 4585 4610↓ 2185 2425 4585↓ 4595 4682 49 0
E6 2055 2055∼ 670 1385 2055∼ 2055 2055 0 0
E7 4155 4155∼ 1900 2255 4155∼ 4155 4156 3 0
E8 4710 4710∼ 2150 2560 4710∼ 4710 4714.2 5 0
E9 5780 5870↓ 2285 3585 5810↓ 5855 5956.8 45 0
E10 3605 3605∼ 1690 1915 3605∼ 3605 3621 14 0
E11 4637 4670↓ 1850 2820 4670↓ 4680 4764.8 42 0
E12 4180 4200↓ 1715 2485 4195↓ 4215 4254.5 17 0
E13 3345 3345∼ 1325 2020 3345∼ 3345 3345.3 1 0
E14 4115 4115∼ 1810 2305 4115∼ 4115 4131.7 12 0
E15 4189 4225↓ 1610 2615 4215∼ 4215 4235.7 11 0
E16 3755 3775∼ 1825 1950 3775∼ 3775 3789.2 15 0
E17 2740 2740∼ 1290 1450 2740∼ 2740 2740 0 0
E18 3825 3835∼ 1610 2225 3835∼ 3835 3841.2 7 0
E19 3222 3235∼ 1435 1800 3235∼ 3235 3235 0 0
E20 2802 2825∼ 990 1835 2825∼ 2825 2825 0 0
E21 3728 3730∼ 1705 2025 3730∼ 3735 3779.8 22 0
E22 2470 2470∼ 1185 1285 2470∼ 2470 2470 0 0
E23 3686 3710∼ 1430 2280 3710∼ 3715 3742 15 0
E24 4001 4020∼ 1785 2235 4020∼ 4020 4063.5 21 0
E25 1615 1615∼ 655 960 1615∼ 1615 1615 0 0
% 0.31 0.23 0.31

‘‘%’’ represents the average deviation to the LB(%).
Further observation indicates that there is a positive correlation
between smooth degree and the total cost of a solution, which
means that the smaller smooth degree is, the smaller total cost
is. The following experiments show that non-smooth penalty can
enhance the construction algorithms. Two new construction al-
gorithms (PSRP, PSEP) and four traditional construction methods
are used as the alternative kernel method of PRM, which can
find a better solution in a large step. The kernel algorithm of
PRM is selected according to the ranks of the candidate con-
struction algorithms according to the smooth degrees of the best
solutions they ever find in the initialization process of algorithm.
According to the comparison analysis between the optimal and
the suboptimal solutions of instances gdb9 and gdb23, a non-
moothed phenomenon is discovered which is described as Eqs.
3),(4). The non-smooth problem of gdb23 is one example whose
bit larger smooth degree is caused by a larger number of routes.
hen reinsert strategy is designed to solve this problem. But
iM method is not always beneficial and cannot improve the
olution already with the minimum number of routes. Then an
A framework with non-smooth penalty (MANSP) is proposed.
xtensive experiments show that MANSP can solve the non-
mooth problem well based on four CARP instances sets and the
erformance of MANSP is very competitive even comparing with
tate-of-the-art algorithms.
Based on comparison analysis, a matching kernel algorithm is

ndeed required for an algorithm. So one of the future work is
o seek a more competitive kernel algorithm. In addition, how
o find a way to reduce the number of routes and improve the
uality are also the possible directions. The code of this paper can
e found in https://github.com/zmdsn/MANSP for research.
16
CRediT authorship contribution statement

Rui Li: Conceptualization, Methodology, Writing,
Revising. Xinchao Zhao: Conceptualization, Revising, Supervi-
sion. Xingquan Zuo: Methodology, Suggestion. Jianmei Yuan:
Suggestion, Reviewing. Xin Yao: Conceptualization, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The first two authors will express our awfully thanks to all
the members of Swarm Intelligence Research group of BeiYou
University. The first author Rui Li will express his awful thanks
to Prof. Xin Yao, Ke Tang, Yuhui Shi and the research group of
the Southern University of Science and Technology for their help
and guidance when he was visiting there for one and a half year
as a visiting student. Many thanks are also for Changwu Huang
and Dongbin Jiao, for their guidance and help in study and life in
Shenzhen.

Appendix. Comparison between MAENS and MANSP on bmcv
benchmark set

See Tables 12–15.

https://github.com/zmdsn/MANSP

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957

T
C

able 15
omparison results on the F subset in BMCV benchmark set, ‘min’, ‘mean’, ‘std’ are the minimum, mean and standard deviation values of 30 results, ‘NS’ is the

succeeding number of finding the lower bound LB [47–49].

Instance LB MAENS QICA MANSP

Repaired Published Offset Min Mean Std NS

F1 4040 4040∼ 1065 2975 4040∼ 4040 4048.2 2 30
F2 3300 3300∼ 920 2380 3300∼ 3300 3300 0 30
F3 1665 1665∼ 400 1265 1665∼ 1665 1665 0 30
F4 3476 3495↑ 950 2545 3435↓ 3485 3509.2 7 21
F5 3605 3605∼ 1180 2425 3600∼ 3605 3605.2 0 19
F6 1875 1875∼ 490 1385 1875∼ 1875 1875 0 30
F7 3335 3335∼ 1080 2255 3335∼ 3335 3335 0 30
F8 3690 3705∼ 1145 2560 3705∼ 3705 3705 0 30
F9 4730 4730∼ 1145 3585 4730∼ 4730 4780.8 31 24
F10 2925 2925∼ 1010 1915 2925∼ 2925 2925 0 30
F11 3835 3835∼ 1015 2820 3835∼ 3835 3861.7 8 20
F12 3390 3395∼ 910 2485 3395∼ 3395 3453.5 22 23
F13 2855 2855∼ 835 2020 2855∼ 2855 2855 0 30
F14 3330 3340↑ 1035 2305 3330∼ 3330 3350.5 9 15
F15 3560 3560∼ 945 2615 3560∼ 3560 3562 4 22
F16 2725 2725∼ 775 1950 2725∼ 2725 2725 0 30
F17 2055 2055∼ 605 1450 2055∼ 2055 2055 0 30
F18 3063 3075∼ 850 2225 3065∼ 3075 3075 0 30
F19 2500 2525∼ 725 1800 2525∼ 2525 2525 0 30
F20 2445 2445∼ 610 1835 2445∼ 2445 2445.2 0 28
F21 2930 2930∼ 905 2025 2930∼ 2930 2930 0 30
F22 2075 2075∼ 790 1285 2075∼ 2075 2075 0 30
F23 2994 3005∼ 725 2280 3000∼ 3005 3010.7 5 25
F24 3210 3240∼ 1005 2235 3210↓ 3240 3255.5 7 0
F25 1390 1390∼ 430 960 1390∼ 1390 1390 0 30
% 0.16 0.20 0.10

‘‘%’’ represents the average deviation to the LB(%).
References

[1] M. Dror, Arc Routing: Theory, Solutions and Applications, Springer US,
Boston, MA, 2000.

[2] B. Golden, S. Raghavan, E. Wasil, The Vehicle Routing Problem: Latest
Advances and New Challenges, Springer, Boston, MA, 2008.

[3] H. Handa, L. Chapman, X. Yao, Applications notes - Robust route optimiza-
tion for gritting/salting trucks: A CERCIA experience, IEEE Comput. Intell.
Mag. 1 (1) (2006) 6–9.

[4] P. Lacomme, C. Prins, W. Ramdane-Cherif, Evolutionary algorithms for
periodic arc routing problems, European J. Oper. Res. 165 (2) (2005)
535–553.

[5] E.B. Tirkolaee, I. Mahdavi, M.M.S. Esfahani, A robust periodic capacitatedarc
routing problem for urban waste collection considering drivers and crew
working time, Waste Manage. 76 (2018) 138–146.

[6] E.B. Tirkolaee, A. Goli, M. Pahlevan, R.M. Kordestanizadeh, A robust bi-
objective multi-trip periodic capacitated arc routing problem for urban
waste collection using a multi-objective invasive weed optimization, Waste
Manage. Res. 37 (11) (2019) 1089–1101.

[7] P. Li, M. Yun, J. Tian, et al., Stacked dense networks for single-image snow
removal, Neurocomputing 367 (2019) 152–163.

[8] A. Khajepour, M. Sheikhmohammady, E. Nikbakhsh, Field path planning
using capacitated arc routing problem, Comput. Electron. Agric. 173 (2020)
105401.

[9] Y. Zhang, Y. Mei, K. Tang, K. Jiang, Memetic algorithm with route decom-
posing for periodic capacitated arc routing problem, Appl. Soft Comput. 52
(2017) 1130–1142.

[10] G.V. Batista, C.T. Scarpin, J.E. Percora, A. Ruiz, A new ant colony optimiza-
tion algorithm to solve the periodic capacitated arc routing problem with
continuous moves, Math. Probl. Eng. 2019 (2019) 1–12, Article 3201656.

[11] D. Cattaruzza, N. Absi, D. Feillet, Vehicle routing problems with multiple
trips, Ann. Oper. Res. 271 (2018) 127–159.

[12] Y. Sun, D. Wang, Ma. Lang, X. Zhou, Solving the time-dependent multi-
trip vehicle routing problem with time windows and an improved travel
speed model by a hybrid solution algorithm, Cluster Comput. 22 (2019)
15459–15470.
17
[13] Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for
multiobjective capacitated arc routing problem, IEEE Trans. Evol. Comput.
15 (2) (2011) 151–165.

[14] L. Delgado-Antequera, R. Caballero, J. Sanchez-Oro, et al., Iterated greedy
with variable neighborhood search for a multiobjective waste collection
problem, Expert Syst. Appl. 145 (2020) 113101.

[15] B.L. Golden, R.T. Wong, Capacitated arc routing problems, Networks 11 (3)
(1981) 305–315.

[16] K. Tang, J. Wang, X. Li, X. Yao, A scalable approach to capacitated arc
routing problems based on hierarchical decomposition, IEEE Trans. Cybern.
47 (11) (2017) 3928–3940.

[17] R. Shang, B. Du, K. Dai, L. Jiao, Y. Xue, Memetic algorithm based on
extension step and statistical filtering for large-scale capacitated arc
routing problems, Nat. Comput. 17 (2) (2018) 375–391.

[18] R. Shang, K. Dai, L. Jiao, R. Stolkin, Improved memetic algorithm based
on route distance grouping for multiobjective large scale capacitated arc
routing problems, IEEE Trans. Cybern. 46 (4) (2016) 1000–1013.

[19] J. de Armas, P. Keenan, A.A. Juan, S. McGarraghy, Solving large-scale
time capacitated arc routing problems: from real-time heuristics to
metaheuristics, Ann. Oper. Res. 273 (2019) 135–162.

[20] G. Marques, R. Sadykov, J.-C. Deschamps, R. Dupas, An improved branch-
cut-and-price algorithm for the two-echelon capacitated vehicle routing
problem, Comput. Oper. Res. 114 (2020) 104833.

[21] B.L. Golden, J.S. Dearmon, E.K. Baker, Computational experiments with
algorithms for a class of routing problems, Comput. Oper. Res. 10 (1)
(1983) 47–59.

[22] G. Ulusoy, The fleet size and mix problem for capacitated arc routing,
European J. Oper. Res. 22 (3) (1985) 329–337.

[23] A. Hertz, G. Laporte, M. Mittaz, A tabu search heuristic for the capacitated
arc routing problem, Oper. Res. 48 (1) (2000) 129–135.

[24] A. Hertz, M. Mittaz, A variable neighborhood descent algorithm for the
undirected capacitated arc routing problem, Transp. Sci. 35 (4) (2001)
425–434.

[25] P. Beullens, L. Muyldermans, D. Cattrysse, D. Van Oudheusden, A guided
local search heuristic for the capacitated arc routing problem, European J.
Oper. Res. 147 (3) (2003) 629–643.

[26] P. Lacomme, C. Prins, W. Ramdane-Cherif, A genetic algorithm for the ca-
pacitated arc routing problem and its extensions, in: EvoWorkshops 2001:
Applications of Evolutionary Computing, LNCS2037, 2001, pp. 473–483.

http://refhub.elsevier.com/S0950-7051(21)00220-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb2
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb3
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb4
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb5
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb6
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb7
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb8
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb9
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb10
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb15
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb16
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb17
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb18
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb19
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb20
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb21
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb21
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb21
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb21
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb21
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb22
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb23
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb23
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb23
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb24
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb24
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb24
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb24
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb24
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb25
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb25

R. Li, X. Zhao, X. Zuo et al. Knowledge-Based Systems 220 (2021) 106957
[27] K. Tang, Y. Mei, X. Yao, Memetic algorithm with extended neighborhood
search for capacitated arc routing problems, IEEE Trans. Evol. Comput. 13
(5) (2009) 1151–1166.

[28] P. Lacomme, C. Prins, W. Ramdane-Cherif, Competitive memetic algorithms
for arc routing problems, Ann. Oper. Res. 131 (1–4) (2004) 159–185.

[29] B. Peng, Y. Zhang, Z. Lv, T.C.E. Cheng, F. Glover, A learning-based memetic
algorithm for the multiple vehicle pickup and delivery problem with LIFO
loading, Comput. Ind. Eng. 142 (2020) 106241.

[30] Y. Wang, L. Wang, G. Chen, Z. Cai, Y. Zhou, L. Xing, An improved ant colony
optimization algorithm to the periodic vehicle routing problem with time
window and service choice, Swarm Evol. Comput. 55 (2020) 100675.

[31] H. Zhang, Q. Zhang, L. Ma, Z. Zhang, Y. Liu, A hybrid ant colony optimiza-
tion algorithm for a multi-objective vehicle routing problem with flexible
time windows, Inform. Sci. 490 (2019) 166–190.

[32] R. Shang, B. Du, K. Dai, L. Jiao, A.M.G. Esfahani, R. Stolkin, Quantum-inspired
immune clonal algorithm for solving large-scale capacitated arc routing
problems, Memetic Comput. 10 (1) (2018) 81–102.

[33] K. Bi, Y. Chen, C.-H. (John) Wu, D. Ben-Arieh, A memetic algorithm for
solving optimal control problems of zika virus epidemic with equilibriums
and backward bifurcation analysis, Commun. Nonlinear Sci. Numer. Simul.
84 (2020) 105176.

[34] S. Wang, L. Wang, An estimation of distribution algorithm-based memetic
algorithm for the distributed assembly permutation flow-shop scheduling
problem, IEEE Trans. Syst. Man Cybern. Syst. 46 (1) (2016) 139–149.

[35] Z. Liao, W. Gong, L. Wang, Memetic niching-based evolutionary algorithms
for solving nonlinear equation system, Expert Syst. Appl. 149 (2020)
113261.

[36] J.M. Belenguer, E. Benavent, P. Lacomme, C. Prins, Lower and upper bounds
for the mixed capacitated arc routing problem, Comput. Oper. Res. 33 (12)
(2006) 3363–3383.

[37] L. Santos, J. Coutinho-Rodrigues, J.R. Current, An improved heuristic for
the capacitated arc routing problem, Comput. Oper. Res. 36 (9) (2009)
2632–2637.
18
[38] L.M.S. Bento, D.R. Boccardo, R.C.S. Machado, et al., Dijkstra graphs, Discrete
Appl. Math. 261 (2019) 52–62.

[39] P. Moscato, On Evolution, Search, Optimization, Genetic Algorithms and
Martial Arts: Toward Memetic Algorithms, Rep. 826, in: Caltech Concurrent
Comput. Program, CalTech, Pasadena, CA, 1989.

[40] M. Gong, C. Chen, Y. Xie, S. Wang, Community preserving network
embedding based on memetic algorithm, IEEE Trans. Emerg. Top. Comput.
Intell. 4 (2) (2020) 108–118.

[41] J.C. Molina, J.L. Salmeron, I. Eguia, An ACS-based memetic algorithm for the
heterogeneous vehicle routing problem with time windows, Expert Syst.
Appl. 157 (2020) 113379.

[42] R. Kendy Arakaki, F. Luiz Usberti, An efficiency-based path-scanning heuris-
tic for the capacitated arc routing problem, Comput. Oper. Res. 103 (2019)
288–295.

[43] J.S. DeArmon, A Comparison of Heuristics for the Capacitated Chinese
Postman Problems (M.S. thesis), Univ. Maryland, College Park, MD, 1981.

[44] G. Rudolph, Convergence analysis of canonical genetic algorithms, IEEE
Trans. Neural Netw. 5 (1) (1994) 96–101.

[45] E. Benavent, V. Campos, A. Corberan, E. Mota, The capacitated arc routing
problem: Lower bounds, Networks 22 (7) (1992) 669–690.

[46] R.W. Eglese, Routeing winter gritting vehicles, Discrete Appl. Math. 48 (3)
(1994) 231–244.

[47] J.M. Belenguer, E. Benavent, A cutting plane algorithm for the capacitated
arc routing problem, Comput. Oper. Res. 30 (5) (2003) 705–728.

[48] R. Baldacci, V. Maniezzo, Exact methods based on node-routing for-
mulations for undirected arc-routing problems, Networks 47 (1) (2006)
52–60.

[49] H. Longo, M.P. de, E. Uchoa, Solving capacitated arc routing problems using
a transformation to the CVRP, Comput. Oper. Res. 33 (6) (2006) 1823–1837.

[50] C. Bode, S. Irnich, Cut-first branch-and-price-second for the capacitated
arc-routing problem, Oper. Res. 60 (5) (2012) 1167–1182.

http://refhub.elsevier.com/S0950-7051(21)00220-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb27
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb28
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb29
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb30
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb31
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb32
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb33
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb34
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb34
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb34
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb34
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb34
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb36
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb36
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb36
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb36
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb36
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb37
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb37
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb37
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb37
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb37
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb38
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb38
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb38
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb39
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb39
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb39
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb39
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb39
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb40
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb40
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb40
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb40
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb40
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb41
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb41
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb41
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb41
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb41
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb42
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb42
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb42
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb42
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb42
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb43
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb43
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb43
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb44
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb44
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb44
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb45
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb45
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb45
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb46
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb46
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb46
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb47
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb47
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb47
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb48
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb48
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb48
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb48
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb48
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb49
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb49
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb49
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb50
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb50
http://refhub.elsevier.com/S0950-7051(21)00220-3/sb50

	Memetic algorithm with non-smooth penalty for capacitated arc routing problem
	Introduction
	Background knowledge
	Representation of solution and CARP model
	Framework of Memetic algorithms (MAs)
	Initial population
	Augment Merge (AM)
	Path Scanning (PS)
	Path Scanning with random select (PSR)
	Path Scanning with ellipse rule (PSE)

	Crossover
	Local search operators

	Smooth degree and non-smooth penalty
	Smooth degree
	Non-smooth penalty path-scanning method
	Non-smooth penalty
	Non-smooth penalty path-scanning method

	Memetic algorithm with non-smooth penalty (MANSP)
	Partial reconstruction method for individual
	 Initialization and the kernel method selection
	Reinsertion method
	Memetic algorithm with non-smooth penalty (MANSP)
	Convergence analysis of MANSP

	Experimental studies and comparison analysis
	Smooth degree of construction algorithms
	Discussion on penalty factor parameters
	Discussion on the kernel algorithm
	Performance comparison with state-of-the-art algorithms
	gdb
	val test set
	egl test set
	bmcv test set

	Effect verification of reinsertion method

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Comparison between MAENS and MANSP on bmcv benchmark set
	References

